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I. INTRODUCTION / PROPOSAL GOALS

We set out to implement a multi-species particle interaction
using a 2D Material Point Method (MPM). Specifically, we
aimed to simulate the mixing of sand and water, following the
methods presented in the paper “Multi-species simulation of
porous sand and water mixtures” [Tampubolon et. al. 2017].
These methods were primarily centered around modeling
different interactions between particles, using the grids as a
structure to more efficiently update masses, velocities, and
forces, before transferring this data back to the particles
and updating their locations. Further, we planned to extend
this paper by producing new absorbance effects by adding
buoyancy terms and capillary action forces.

II. ACCOMPLISHMENTS

For our implementation, we used the Taichi Graphics
library, which is a high performance programming language
built on Python and used for graphics applications. Our
starting point was an open-source repository implementing
a single-grid MPM, based on the paper "High-Performance
MLS-MPM Solver with Cutting and Coupling (CPIC)," [Hu
2018].

We first extended this codebase to store particles in two
grids — one containing the sand particles, and the other
containing water particles. For simplicity, the particles are
rendered in the Taichi GUI interface as small square sprites.
Before trying to get the grids to interact, we were able to
render the water and sand particles as separate simulations
on the same screen. We then implemented the water-sand
particle interaction relationships in order to render a realistic
simulation. However, we couldn’t get these interaction forces
to work properly given the underlying code describing the
water and sand separately (see the “preflame” branch on
284b_mpm).

Therefore, we attempted to start mostly from scratch to
build a multi-grid implementation more closely following the
Flame repository (but in Taichi/Python rather than C++). By
the end, most of the MPMSolver code was our own, with only
some of the underlying Taichi configuration, GUI set-up, and
solver initialization remaining from our starting code. The
resulting code from this last attempt was the most readable
and follows the equations in the paper quite closely. Therefore,
we’ve chosen to include a walkthrough of how this latest code
runs, even though there is still something wrong with the
cohesion of the particles.

III. CODE WALK-THROUGH

The code itself can be found here, in the files
scripts/mpm128_2grid.py and scripts/mpm_solver.py

In all formulae:
• Superscripts n and n+1 indicate the current and next

timesteps
• Superscripts s and w indicate sand and water, and alpha

indicates when an equation applies to both media types
• Subscripts p and i indicate particles and grid cells

Refer to the Table of notation for variable definitions not
discussed directly.

A. Scene set-up and initialization
In the file mpm128_2grid.py, we initialize custom-defined

ParticleGroup objects that can be configured to have a
particular size, material, position, and velocity. This is defined
in particle_group.py.

Next, we initialize a GUI and the MPMSolver, defined
in mpm_solver.py (linked above). In the initialization, we
declare our global simulation parameters: the number of
particles (with this taichi implementation, the number of
particles must remain constant), the grid resolution, the time
step size, and constants for sand plasticity and water pressure.
There are also several Taichi fields to hold per-particle
attributes. These include position, velocity, affine velocity
field, material, deformation gradients, cohesion, and cached
particle-to-grid scattering weights. The velocity, mass, force
grids for each particle type are also declared as Taichi fields.
Together, these fields hold all of the particle and grid data that
change throughout the simulation. Finally, the initialization
also prepares the solver to hold information on the explicit
forces of gravity and a mouse-controller attractor, as well as
the parameters of the particle sources (from ParticleGroup
objects) placed at the beginning of the simulation.

https://github.com/yuanming-hu/taichi_mpm
https://github.com/athakrar1/284b_mpm/tree/main
https://github.com/athakrar1/284b_mpm/blob/main/scripts/mpm128_2grid.py
https://github.com/athakrar1/284b_mpm/blob/main/scripts/mpm_solver.py


These particle sources are placed using the
read_particle_groups() function, and all of the particle
data are initialized when reset() is called. Particles are initially
randomly scattered within the desired source areas.

For each frame of the simulation, the GUI first checks for
user input and adjusts forces accordingly. The solver runs
its substep() function n_supsteps times and finally draws the
particles.

B. Particle to Grid (P2G)
Inside MPMSolver.substep(), the first step is

transferring particle data to the grids. The
initialize_mass_and_velocity_grids() function iterates
through all particles. For each one, the position of the particle
on the grid is computed, then we iterate through the 4x4 patch
of grid cells surrounding the particle. For each of these grid
cells, the distance of the particle from the center of the cell is
computed, then used to calculate a Quadratic B-Spline weight
(and the derivative of the weight) assigned to that grid cell.
Cells closer to the particle receive higher weights, with a
steep falloff. These weights are cached at this point to again
be used in multiple steps. The weights are used to transfer the
mass and velocity of the particle to the surrounding grid cells,
according to the following formulae:
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where w indicates the weight linking a given particle and
grid cell, C is the affine velocity field local to the particle, and
the x term is the difference in particle and grid cell positions.
In addition to the existing mass and velocity of the particles,
internal stress forces on the particles, calculated as energy
derivatives, are also transferred to a grid for each material type.
The overall formulae for these forces is given by:
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The sand energy derivatives (the second term in the first
summation above) are based on the elastic potential energy
indicated by an elastic deformation gradient matrix. First
calculating the singular value decomposition (SVD) of this
matrix allows for a more straightforward computation of the
energy derivative. We solved for the ψ term, the elastic
potential energy density, using the Ducker-Prager formulation
as described in the paper “Drucker-Prager Elastoplasticity for
Sand Animation” [Klar 2016]. We specifically implemented
the constitutive model, as described by this equation in section
6.2 of the paper:

ψ
s(Fs) = ψ̃

s(ε) = µtr(ε2)+λ2trε

If we model water as nearly-incompressible, the energy
derivative of water can be computed as:

σ
w = pwI, pw = k(

1
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Where Jw is the determinant of the deformation gradient,
k is the bulk modulus of the water (a constant, called
water_hardness in the code), and gamma penalizes deviations
from incompressibility. We implemented this formula in the
energy_derivative_water() function.

These energy derivatives are used along with the weight
gradient and deformation gradient to implement equations 16
and 17 (above) in the function explicit_force_grid()

C. Grid Updates
Next comes the grid update stage, which we implemented

in the function momenta_exchange(). For non-interacting grid
cells (only water or sand, not both) this simply means applying
the external force of gravity and the internal stress forces
to the velocity grid. For cells with interaction, it becomes
more complicated. We followed Section 4.2 of the main
paper, except that we implemented forward Euler rather than
implicit integration, avoiding the non-linearity of equation 22
by using the existing velocities of the current time step in
our explicit force calculations rather than implicitly using the
future velocities.

The discrete interaction terms (i.e. drag) for sand and water,
respectively, are computed as:
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where Ce is a drag coefficient dependent on the water
saturation and the m terms are the mass of sand and water
in a given cell. The velocity terms are being solved for in the
resulting coupled system:
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where D contains the discrete interaction coefficients, M
contains the masses of sand and water in the cell along its
diagonal, Mg is the gravitational force, the f term is the stress
force, and ∆t is the length of the substep. Since we used vn

rather that vn+1 in the force term (i.e. we use forward Euler
integration), the system is linear and can be solved directly by
taking the inverse of the (M+∆tD) term and multiplying it by
the RHS. This isolates the vn+1 term, which is used to update
the velocity grids.

Also during this step, the volume fraction of water in each



grid cell is computed and stored in the field grid_saturation.
The grid update step ends with the enforcement of boundary

conditions. In our implementation, grid cell velocities are
simply set to zero for the three layers of cells along the border.
Ideally, friction along the boundary would be defined so that
velocities parallel to the border would not be fully killed.

D. Grid to Particle (G2P)
First, the saturation (wetness) of sand particles is computed

in the function update_saturation() by transferring the
saturation grid values to particles using the standard weighting
scheme.
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Next, the new velocities computed on the grid can be
transferred back to the particles using the same weights from
before. In the function update_velocity_grid(), the weighted
sum of velocities is computed over the 4x4 patch of grid cell
surrounding each particle, corresponding with the following
equation:
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In the same loop, we update the affine velocity matrix used
in P2G according to the equation:
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In the update_particles() function, the first thing that
happens is simply moving the particle positions based on their
new velocities, according to the following equation:
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Then, the deformation gradients are updated. For
water, the following equation is used, implemented in
update_gradient_water():
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For sand, this equation is used, implemented in
update_gradient_sand():
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The main difference in the above equations is that only the
determinant of the elastic deformation gradient needs to be
used for water, rather than the matrix itself for sand. The paper
argues that this approach offers greater stability.

For sand in particular, the functions
update_cohesion_sand() and apply_plasticity_sand() are
called, implementing saturation-dependent cohesion with
Drucker-Prager volume correction (Sections 4.3.3-4.3.4). In
particular, cohesion is updated according to:
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where φ is the particle saturation computed earlier (in the
grid stage), and cs0 is an initial cohesion constant (effectively
setting the maximum possible cohesion).

The computed cohesion is then used to apply plasticity to
the sand particles to create clumping effects and additional
stiffness for wet sand. The project_sand() function performs
the Drucker-Prager plastic flow and yield condition to
determine how the deformation gradients should be updated
for the sand. This follows Equation 6 in the paper:
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The Drucker-Prager projection itself also happens here, and
follows Equation 27:
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In apply_plasticity_sand(), the determinant of the elastic
deformation gradient is determined before and after the
projection in order to determine volume change. The volume
correction term Vc is adjusted to counteract this. This follows
Equation 26:
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This concludes one iteration of the substep() function. The
multi-grid MPM solver repeatedly applies this process for a
provided number of frames.

IV. RESULTS

A. Single-grid MPM
The implementation described above unfortunately results

in sand particles that collapse on themselves rather than
deforming correctly. This also means that we can’t currently
see how the sand and water interact.

In our implementation that built more heavily upon
the single-grid MPM starter code (rather than the latest
implementation, written mostly from scratch), the sand and
water still didn’t interact correctly. However, the sand and
water each deformed correctly, and there was genuine 2-grid
interaction happening, as demonstrated in the figure below.

B. Video demos
Demo 1: two independent grids, each grid containing water

and sand, respectively. Commit, Video
Demo 2: One grid, multiple blocks of water interacting with

each other. Commit, Video
Demo 3: One grid, multiple blocks of sand interacting with

each other. Commit, Video
Demo 4: One grid, sand particles interacting with water

particles Commit, Video 1: Sand falling into water, Video

https://github.com/athakrar1/284b_mpm/commit/bd0a9a167322ab0a0943d2651505777c23d02445
https://drive.google.com/file/d/1d7jjHRV7_72L0fTiQIGrmyJWzAvLviYI/view?usp=sharing
https://github.com/athakrar1/284b_mpm/commit/526b2447988e1550b1d264f5fa039a39a76d0206
https://drive.google.com/file/d/1i_W89tVm25JolsbwEr2ClOeHyFnixST-/view?usp=sharing
https://github.com/athakrar1/284b_mpm/commit/9c2b3f6ca07c75aeb7a71cf261e896c99ab06ac3
https://drive.google.com/file/d/1pkSsvAegxIa4oIsADuTtmv4Kxq2_7Krb/view?usp=sharing 
https://github.com/athakrar1/284b_mpm/commit/9c2b3f6ca07c75aeb7a71cf261e896c99ab06ac3 
https://drive.google.com/file/d/13N-nsyOEEZzmQOz3zDuulehwrHX8XryJ/view?usp=sharing
https://drive.google.com/file/d/1vFgbkPaxByA0ly_YAdmi29eEACdiWcBx/view?usp=sharing 


2: Water falling into sand
Demo 5: Two grids, sand particles interacting with water

particles (unable to kernelize due to taichi errors, which made
it difficult to debug the errors. The result as shown is both
slow and non-realistic, which is likely due to the C matrix
(description of C matrix) and minor discrepancies in the force
computation which snowballed into larger scale effects in the
simulation). Commit, Video

Demo 6: Two grids, sand particles interacting with water
particles but interaction forces are incorrect. New branch
created from an old commit that is less broken than our latest
code. Branch, Video, Video with the interaction force zeroed
out instead

V. PROJECT ASSESSMENT

We now realize that we greatly underestimated the time it
would take to implement this algorithm. Given our lack of
experience in the simulation space, we were unable to properly
gauge the workload upon coming into this project. We found
some of the papers we looked at to be difficult to understand,
and even more difficult to implement! We also ran into quite a
few hardware-related troubles while working on our CS284B
final project — these issues set us back several weeks in our
development. We tried computers in various labs on campus
and ended up working in the Sutardja Dai 200 computer lab.
The computers took some time to set up, given that we did
not have admin permissions to install software. However,
after working on these computers for a few weeks, we started
getting CUDA errors that we were unable to resolve and had
to pivot to a different codebase. In all of these cases, we’ve
found Taichi Graphics very difficult to work with and debug,
which has further contributed to delays in moving forward
with the implementation. In retrospect, it may have been wise
to switch to another codebase or implement a test project in
Taichi before committing to such a large endeavor, just so we
were able to understand the limitations of our hardware and
the software itself. However, from this experience, we ended
up learning a lot about how to troubleshoot and interface with
admins to get work done!

In spite of (and because of) these struggles, we took a lot
away from this experience. We both have a much stronger
understanding of fluid simulation technology, which was a
goal we both had coming into the course. We were fascinated
by the effectiveness of transferring data between particles and
grids as a process to speed up and improve the stability of fluid
simulations. It was exciting to dive deeply into a new paper
and project, implementing a cutting-edge concept in computer
graphics. We did a lot of digging into other papers to find
derivations for equations for the purpose of implementation,
which helped us further understand how complex it is to
implement this sort of paper with little outside framework.

Early last month, we met up with Andre Pradhana
Tampubolon, who is the first author on the paper we based
most of our work on. When he heard we were interested in
improving how the absorbance of sand is modeled one we’d
implemented his paper, he pointed us to a recent paper on
porous materials, "Unified Particle System for Multiple-fluid
Flow and Porous Material" [Ren et. al. 2021]. However, he

was also surprised to hear that we only had a month to re-
implement the paper and then build on top of it. Accordingly,
he told us to limit the scope of what we were trying to do.
While this discussion didn’t lead us to pivot to a different
topic (as it probably should have), it did convince us to work
entirely in 2D. At that point we had already set several reach
goals for ourselves in the proposal that went beyond the source
paper, but we were just starting to realize how difficult the re-
implementation of multi-grid MPM would be on its own.

Neither of us had ever taken a graduate level course before
this one. The open-ended nature of the project was both
daunting and exciting, as it really allowed us to explore our
interests!

VI. FUTURE WORK

Due to hardware constraints, we were unable to render the
simulation in 3D. In the future, we hope to extend our code
into 3D space. Further, we hope to increase the resolution
of the simulation without having excessive runtimes. One
method of doing so would be to use a machine learning
model to learn velocity and cohesion values, or to upscale the
particle count. Further, we could incorporate adaptive particle
size techniques, as described by the paper “Highly Adaptive
Liquid Simulations on Tetrahedral Meshes” [Ando 2013].
Another avenue of exploration is to implement a more realistic
surface tension effect using techniques outlined in “Real-time
Animation of Sand-Water Interaction” (Rungjiratananon et al.
[2008]). In this implementation, the surface tension induces
a “liquid bridge” between particles, which in turn, affects the
cohesion and stickiness properties of the sand. Further, every
particle has a “wetness” term which also influences the tension
and cohesion interactions. This is a method to extend our
baseline framework!
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VIII. REFERENCES (Code)

• Our starter code: https://github.com/yuanming-
hu/taichi_mpm

• Codebase we built on in the Sutardja Dai computer lab:
https://github.com/Jack12xl/taichi_elements

• A C++ repository we looked over extensively to help
create our own original implementation in Taichi/Python:
https://github.com/YiYiXia/Flame and its accompanying
paper (very similar to [Tampubolon et al 2017])

• Taichi lang: https://www.taichi-lang.org/

https://github.com/yuanming-hu/taichi_mpm
https://github.com/yuanming-hu/taichi_mpm
https://github.com/Jack12xl/taichi_elements
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